Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
An Introduction to Machine Learning
Details
Offers a comprehensive introduction to the foundations of machine learning in a very easy-to-understand manner In addition to describing techniques and algorithms, each tool is applied to their appropriate situations Teaching resources include a Solutions Manual to end-of-chapter exercises, with presentation slides Request lecturer material: sn.pub/lecturer-material
Autorentext
Miroslav Kubat, Associate Professor at the University of Miami, has been teaching and studying machine learning for over 25 years. He has published more than 100 peer-reviewed papers, co-edited two books, served on the program committees of over 60 conferences and workshops, and is an editorial board member of three scientific journals. He is widely credited with co-pioneering research in two major branches of the discipline: induction of time-varying concepts and learning from imbalanced training sets. He also contributed to research in induction from multi-label examples, induction of hierarchically organized classes, genetic algorithms, and initialization of neural networks. Professor Kubat is also known for his many practical applications of machine learning, ranging from oil-spill detection in radar images to text categorization to tumor segmentation in MR images.
Inhalt
- Ambitions and Goals of Machine Learning.- 2. Probabilities: Bayesian Classifiers.- 3. Similarities: Nearest-Neighbor Classifiers.- 4. Inter-Class Boundaries: Linear and Polynomial Classifiers.- 5. Decision Trees.- 6. Artificial Neural Networks.- 7. Computational Learning Theory.- 8. Experience from Historical Applications.- 9. Voting Assemblies and Boosting.- 10. Classifiers in the Form of Rule-Sets.- 11. Practical Issues to Know About.- 12. Performance Evaluation.- 13. Statistical Significance.- 14. Induction in Multi-Label Domains.- 15. Unsupervised Learning.- 16. Deep Learning.- 17. Reinforcement Learning: N-Armed Bandits and Episodes.- 18. Reinforcement Learning: From TD(0) to Deep-Q-Learning.- 19. Temporal Learning.- 20. Hidden Markov Models.- 21. Genetic Algorithm.- Bibliography.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030819347
- Genre Information Technology
- Auflage 3rd edition 2021
- Lesemotiv Verstehen
- Anzahl Seiten 476
- Größe H241mm x B160mm x T31mm
- Jahr 2021
- EAN 9783030819347
- Format Fester Einband
- ISBN 3030819345
- Veröffentlichung 27.09.2021
- Titel An Introduction to Machine Learning
- Autor Miroslav Kubat
- Gewicht 875g
- Herausgeber Birkhäuser
- Sprache Englisch