An Introduction to Nonlinear Functional Analysis and Elliptic Problems

CHF 113.15
Auf Lager
SKU
TL16O236B2P
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

This self-contained textbook provides the basic, abstract tools used in nonlinear analysis. The text discusses key results such as the Banach contraction principle, a fixed point theorem for increasing operators, local and global inversion theory, and more.

This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems. By first outlining the advantages and disadvantages of each method, this comprehensive text displays how various approaches can easily be applied to a range of model cases.

An Introduction to Nonlinear Functional Analysis and Elliptic Problems is divided into two parts: the first discusses key results such as the Banach contraction principle, a fixed point theorem for increasing operators, local and global inversion theory, LeraySchauder degree, critical point theory, and bifurcation theory; the second part shows how these abstract results apply to Dirichlet elliptic boundary value problems. The exposition is driven by numerous prototype problems and exposes a variety of approaches to solving them.

Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.


Provides the basic, abstract tools used in nonlinear analysis Key results such as the Banach contraction principle, a fixed point theorem for increasing operators, local and global inversion theory, Leray--Schauder degree, critical point theory, and bifurcation theory Outlines a variety of approaches and displays how they can easily be applied to a range of model cases Clear exposition driven by numerous prototype problems An extensive appendix that includes further results on weak derivatives Includes supplementary material: sn.pub/extras

Autorentext
Both authors are leading experts in this area of mathematics. Antonio Ambrosetti has been at the very forefront of research in this field for forty years, and several of the major topics from Parts 1 and 2 of the book are drawn from his research.

Inhalt

Notation.- Preliminaries.- Some Fixed Point Theorems.- Local and Global Inversion Theorems.- Leray-Schauder Topological Degree.- An Outline of Critical Points.- Bifurcation Theory.- Elliptic Problems and Functional Analysis.- Problems with A Priori Bounds.- Asymptotically Linear Problems.- Asymmetric Nonlinearities.- Superlinear Problems.- Quasilinear Problems.- Stationary States of Evolution Equations.- Appendix A Sobolev Spaces.- Exercises.- Index.- Bibliography.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09780817681135
    • Sprache Englisch
    • Größe H249mm x B169mm x T23mm
    • Jahr 2011
    • EAN 9780817681135
    • Format Fester Einband
    • ISBN 978-0-8176-8113-5
    • Veröffentlichung 19.07.2011
    • Titel An Introduction to Nonlinear Functional Analysis and Elliptic Problems
    • Autor Antonio Ambrosetti , David Arcoya Álvarez
    • Untertitel Progress in Nonlinear Differential Equations and Their Applications 82
    • Gewicht 456g
    • Herausgeber Springer Basel AG
    • Anzahl Seiten 199
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38