Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
An Invitation to Web Geometry
Details
This book takes an in-depth look at abelian relations of codimension one webs in the complex analytic setting. In its classical form, web geometry consists in the study of webs up to local diffeomorphisms. A significant part of the theory revolves around the concept of abelian relation, a particular kind of functional relation among the first integrals of the foliations of a web. Two main focuses of the book include how many abelian relations can a web carry and which webs are carrying the maximal possible number of abelian relations. The book offers complete proofs of both Chern's bound and Trépreau's algebraization theorem, including all the necessary prerequisites that go beyond elementary complex analysis or basic algebraic geometry. Most of the examples known up to date of non-algebraizable planar webs of maximal rank are discussed in detail. A historical account of the algebraization problem for maximal rank webs of codimension one is also presented.
I?ncludes a short survey of the history of the field Presentation is elementary and clear Allows the reader to have a global picture of what were and what are the main questions of the field
Autorentext
Jorge Vitorio Pereira is a Research Associate at IMPA (Instituto Nacional de Matematica Pura e Aplicada). Luc Pirio leads research efforts at CNRS.
Inhalt
Local and Global Webs.- Abelian Relations.- Abel's Addition Theorem.- The Converse to Abel's Theorem.- Algebraization.- Exceptional Webs.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319145617
- Sprache Englisch
- Auflage 2015
- Größe H241mm x B160mm x T19mm
- Jahr 2015
- EAN 9783319145617
- Format Fester Einband
- ISBN 3319145614
- Veröffentlichung 23.03.2015
- Titel An Invitation to Web Geometry
- Autor Luc Pirio , Jorge Vitório Pereira
- Untertitel IMPA Monographs 2
- Gewicht 518g
- Herausgeber Springer International Publishing
- Anzahl Seiten 232
- Lesemotiv Verstehen
- Genre Mathematik