Analog IC Placement Generation via Neural Networks from Unlabeled Data

CHF 72.10
Auf Lager
SKU
232SON2OAJ0
Stock 1 Verfügbar
Geliefert zwischen Do., 27.11.2025 und Fr., 28.11.2025

Details

In this book, innovative research using artificial neural networks (ANNs) is conducted to automate the placement task in analog integrated circuit layout design, by creating a generalized model that can generate valid layouts at push-button speed. Further, it exploits ANNs' generalization and push-button speed prediction (once fully trained) capabilities, and details the optimal description of the input/output data relation. The description developed here is chiefly reflected in two of the system's characteristics: the shape of the input data and the minimized loss function. In order to address the latter, abstract and segmented descriptions of both the input data and the objective behavior are developed, which allow the model to identify, in newer scenarios, sub-blocks which can be found in the input data. This approach yields device-level descriptions of the input topology that, for each device, focus on describing its relation to every other device in the topology. By means of thesedescriptions, an unfamiliar overall topology can be broken down into devices that are subject to the same constraints as a device in one of the training topologies. In the experimental results chapter, the trained ANNs are used to produce a variety of valid placement solutions even beyond the scope of the training/validation sets, demonstrating the model's effectiveness in terms of identifying common components between newer topologies and reutilizing the acquired knowledge. Lastly, the methodology used can readily adapt to the given problem's context (high label production cost), resulting in an efficient, inexpensive and fast model.


Describes the advances achieved in the field of machine learning and electronic design automation for analog IC Presents innovative research on the use of artificial neural networks (ANNs) Details the optimal description of the input/output data relation

Inhalt
Introduction.- Related Work: Machine Learning and Electronic Design Automation.- Unlabeled Data and Artificial Neural Networks.- Placement Loss: Placement Constraints Description and Satisfiability Evaluation.- Experimental Results in Industrial Case Studies.- Conclusions.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030500603
    • Sprache Englisch
    • Auflage 1st edition 2020
    • Größe H235mm x B155mm x T7mm
    • Jahr 2020
    • EAN 9783030500603
    • Format Kartonierter Einband
    • ISBN 3030500608
    • Veröffentlichung 01.07.2020
    • Titel Analog IC Placement Generation via Neural Networks from Unlabeled Data
    • Autor António Gusmão , Nuno Horta , Nuno Lourenço , Ricardo Martins
    • Untertitel SpringerBriefs in Applied Sciences and Technology
    • Gewicht 172g
    • Herausgeber Springer
    • Anzahl Seiten 104
    • Lesemotiv Verstehen
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470