Analysing Web Traffic

CHF 202.20
Auf Lager
SKU
8A9C5QL8JGR
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book presents ample, richly illustrated account on results and experience from a project, dealing with the analysis of data concerning behavior patterns on the Web. The advertising on the Web is dealt with, and the ultimate issue is to assess the share of the artificial, automated activity (ads fraud), as opposed to the genuine human activity.

After a comprehensive introductory part, a full-fledged report is provided from a wide range of analytic and design efforts, oriented at: the representation of the Web behavior patterns, formation and selection of telling variables, structuring of the populations of behavior patterns, including the use of clustering, classification of these patterns, and devising most effective and efficient techniques to separate the artificial from the genuine traffic.

A series of important and useful conclusions is drawn, concerning both the nature of the observed phenomenon, and hence the characteristics of the respective datasets, and theappropriateness of the methodological approaches tried out and devised. Some of these observations and conclusions, both related to data and to methods employed, provide a new insight and are sometimes surprising.

The book provides also a rich bibliography on the main problem approached and on the various methodologies tried out.



Presents an ample, richly illustrated account on the analysis of data concerning behavior patterns on the Web Provides a rich bibliography on the main problem approached and on the various methodologies tried out Gives a full-fledged report from a wide range of analytic and design efforts

Inhalt
The problem and its key characteristics.- The pragmatics of the data acquisition and assessment.- The proper representation: patterns, variables and their analysis.- Clustering analysis.- Building the classifiers.- The hybrid cluster-and-classify approach.- A summary view of the problem and its solution.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031325021
    • Genre Technology Encyclopedias
    • Auflage 2023
    • Lesemotiv Verstehen
    • Anzahl Seiten 176
    • Herausgeber Springer Nature Switzerland
    • Größe H241mm x B160mm x T15mm
    • Jahr 2023
    • EAN 9783031325021
    • Format Fester Einband
    • ISBN 3031325028
    • Veröffentlichung 27.06.2023
    • Titel Analysing Web Traffic
    • Autor Agnieszka Jastrz bska , Jan W. Owsi ski , Karol Opara , Tomasz Zwierzchowski , Olgierd Hryniewicz , Mariusz Kozakiewicz , S awomir Zadro ny , Marek Gajewski
    • Untertitel A Case Study on Artificial and Genuine Advertisement-Related Behaviour
    • Gewicht 468g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470