Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Analysis on Manifolds with Generalized Cusps
Details
In this book we are interested in manifolds with cusp like singularities that are in between the cases of cylindrical end and of hyperbolic cusp. More precisely, we study the Laplace operator acting on p-forms, defined on an n-dimensional manifold with generalized cusp. Such a manifold consists of a compact piece and a noncompact one. The noncompact piece is isometric to the generalized cusp. A generalized cusp is an n-dimensional noncompact manifold equipped with a parameter dependent warped product metric. When the positive parameter goes to zero, the cusp becomes a cylinder, and when it goes to infinity, it could be thought of as approaching the n-dimensional hyperbolic cusp. In such a manifold we construct the generalized eigenforms of the Laplacian. Thus, we give a description of the continuous spectral decomposition of the Laplace operator and we determine some of its important properties, like analyticity and the existence of a functional equation. We also define the stationary scattering matrix and find its analytic properties and its functional equation.
Autorentext
PhD in Mathematics at Loughborough University, UK.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783838395401
- Sprache Englisch
- Größe H220mm x B150mm x T6mm
- Jahr 2010
- EAN 9783838395401
- Format Kartonierter Einband
- ISBN 3838395409
- Veröffentlichung 12.09.2010
- Titel Analysis on Manifolds with Generalized Cusps
- Autor Nikolaos Roidos
- Untertitel Spectral Theory of the Laplace Operator
- Gewicht 161g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 96
- Genre Mathematik