Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Analyzing Markov Chains using Kronecker Products
Details
Kronecker products are used to define the underlying Markov chain (MC) in various modeling formalisms, including compositional Markovian models, hierarchical Markovian models, and stochastic process algebras. The motivation behind using a Kronecker structured representation rather than a flat one is to alleviate the storage requirements associated with the MC. With this approach, systems that are an order of magnitude larger can be analyzed on the same platform. The developments in the solution of such MCs are reviewed from an algebraic point of view and possible areas for further research are indicated with an emphasis on preprocessing using reordering, grouping, and lumping and numerical analysis using block iterative, preconditioned projection, multilevel, decompositional, and matrix analytic methods. Case studies from closed queueing networks and stochastic chemical kinetics are provided to motivate decompositional and matrix analytic methods, respectively.
First to provide a solely Kronecker product based treatment of Markov chain analysis The subject matter is interdisciplinary and at the intersection of applied mathematics, specifically numerical linear algebra and computational probability, and computer science The exposition is concise and rigorous, yet it tries to be complete and touches almost all relevant aspects without being too technical. Includes supplementary material: sn.pub/extras Includes supplementary material: sn.pub/extras
Klappentext
Kronecker products are used to define the underlying Markov chain (MC) invarious modeling formalisms, including compositional Markovian models, hierarchical Markovian models, and stochastic process algebras. The motivation behind using a Kronecker structured representation rather than a flat one is to alleviate the storage requirements associated with the MC. With this approach, systems that are an order of magnitude larger can be analyzed on the same platform. The developments in the solution of such MCs are reviewed from an algebraic point of view and possible areas for further research are indicated with an emphasis on preprocessing using reordering, grouping, and lumping and numerical analysis using block iterative, preconditioned projection, multilevel, decompositional, and matrix analytic methods. Case studies from closed queueing networks and stochastic chemical kinetics are provided to motivate decompositional and matrix analytic methods, respectively.
Inhalt
Introduction.- Background.- Kronecker representation.- Preprocessing.- Block iterative methods for Kronecker products.- Preconditioned projection methods.- Multilevel methods.- Decompositional methods.- Matrix analytic methods.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781461441892
- Sprache Englisch
- Auflage 2013
- Größe H235mm x B155mm x T6mm
- Jahr 2012
- EAN 9781461441892
- Format Kartonierter Einband
- ISBN 1461441897
- Veröffentlichung 24.07.2012
- Titel Analyzing Markov Chains using Kronecker Products
- Autor Tugrul Dayar
- Untertitel Theory and Applications
- Gewicht 160g
- Herausgeber Springer New York
- Anzahl Seiten 96
- Lesemotiv Verstehen
- Genre Mathematik