Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Anomaly Detection System for Network Traffic using Data Mining
Details
Anomaly detection using Density Maximization Fuzzy C-means Algorithm: The rationale for the anomaly detection system using density maximization approach to the fuzzy c-means clustering algorithm. The workflow of a proposed anomaly detection system with density maximization FCM algorithm. The framework of ensemble classifier-based anomaly detection - this approach of anomalous detection is based on the integration of multiple classifiers so that the weakness of one classifier can be compensated by the other classifier. The workflow of the proposed intrusion detection framework based on an ensemble classifier.
Autorentext
Mrs. Ruby Sharma has completed her B.Sc.(Agri) in 2011 and M.Sc.(Agri) in 2013 from Assam Agricultural University, Jorhat, Assam. She has been pursuing her Ph.D. from the same institute in the Department of Horticulture on Hydroponic Floriculture. She has been awarded with INSPIRE fellowship from DST, Govt. of India in 2014.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786203305234
- Anzahl Seiten 144
- Genre Allgemein & Lexika
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 233g
- Untertitel Machine Learning Perspective
- Größe H220mm x B150mm x T9mm
- Jahr 2021
- EAN 9786203305234
- Format Kartonierter Einband
- ISBN 6203305235
- Veröffentlichung 19.01.2021
- Titel Anomaly Detection System for Network Traffic using Data Mining
- Autor Ruby Sharma , Sandeep Chaurasia
- Sprache Englisch