Anti-Fraud Engineering for Digital Finance

CHF 229.70
Auf Lager
SKU
5BGAE84GEBT
Stock 1 Verfügbar
Geliefert zwischen Do., 25.12.2025 und Fr., 26.12.2025

Details

This book offers an introduction to the topic of anti-fraud in digital finance based on the behavioral modeling paradigm. It deals with the insufficiency and low-quality of behavior data and presents a unified perspective to combine technology, scenarios, and data for better anti-fraud performance. The goal of this book is to provide a non-intrusive second security line, rather than replaced with existing solutions, for anti-fraud in digital finance. By studying common weaknesses in typical fields, it can support the behavioral modeling paradigm across a wide array of applications. It covers the latest theoretical and experimental progress and offers important information that is just as relevant for researchers as for professionals.


Covers the latest theoretical and experimental progress in anti-fraud fields Introduces the current anti-fraud situation Provides a comprehensive overview of common problems in different anti-fraud fields

Autorentext

Cheng Wang received the M.S. degree from the Department of Applied Mathematics, Tongji University, in 2006 and the Ph.D. degree from the Department of Computer Science, Tongji University, in 2011. He is currently Professor with the Department of Computer Science, Tongji University. His research interests include cyberspace security and intelligent information services.


Inhalt

Overview of Digital Finance Anti Fraud Vertical Association Modeling: Latent Interaction Modeling.- Horizontal Association Modeling: Deep Relation Modeling.- Explicable Integration Techniques: Relative Temporal Position Taxonomy.- Multidimensional Behavior Fusion: Joint Probabilistic Generative Modeling.- Knowledge Oriented Strategies: Dedicated Rule Engine.- Enhancing Association Utility: Dedicated Knowledge Graph.- Associations Dynamic Evolution: Evolving Graph Transformer.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789819952564
    • Herausgeber Springer Nature Singapore
    • Anzahl Seiten 216
    • Lesemotiv Verstehen
    • Genre Software
    • Auflage 1st edition 2023
    • Sprache Englisch
    • Gewicht 534g
    • Untertitel Behavioral Modeling Paradigm
    • Autor Cheng Wang
    • Größe H241mm x B160mm x T17mm
    • Jahr 2023
    • EAN 9789819952564
    • Format Fester Einband
    • ISBN 9819952565
    • Veröffentlichung 05.12.2023
    • Titel Anti-Fraud Engineering for Digital Finance

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470