APPLICATION OF ARTIFICIAL NEURAL NETWORK TECHNIQUE

CHF 59.95
Auf Lager
SKU
174LU9RLINN
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Rainfall is very important parameter in hydrological model. Many techniques and models have been developed for rainfall forecasting. This study present a method of rainfall forecasting by developing an ANN- based model using major weather variables such as dry bulb temperature, wet bulb temperature, relative humidity, pan evaporation, vapour pressure as inputs while the rainfall as the target output. As part of the ANN model development procedures, the data sets of 11956 data in the study area was partitioned into two parts with 70% of the entire data sets used as the training data while the remaining 30% used as the testing and the validation data. The proposed model has been able to predict values with suitable results. For the evaluation of the results and the ability of the developed prognostic models, appropriate statistical indexes such as the coefficient of determination (R2), the Root mean square error (RMSE), Mean square error (MSE), Nash-Sutcliffe efficiency (EF), Akaike information criteria (AIC), Bayesian information criteria (BIC) were used. The findings from this analysis showed that the ANN model 5-5-3-1 provides satisfactory results based on statistical indexes.

Autorentext

Le professeur J. M. Chavda a obtenu sa licence et sa maîtrise en ingénierie agricole auprès de la célèbre université agricole de Junagadh, au Gujarat. Il travaille actuellement comme professeur adjoint à l'université agricole de Sardarkrushinagar Dantiwada, au Gujarat. Il a 5 ans d'expérience dans le domaine de l'enseignement, de la recherche et de la vulgarisation.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber LAP LAMBERT Academic Publishing
    • Gewicht 143g
    • Untertitel Rainfall Forecasting
    • Autor J. M. Chavda , S. K. Chavda , J. J. Makwana
    • Titel APPLICATION OF ARTIFICIAL NEURAL NETWORK TECHNIQUE
    • Veröffentlichung 25.07.2023
    • ISBN 6206753468
    • Format Kartonierter Einband
    • EAN 9786206753469
    • Jahr 2023
    • Größe H220mm x B150mm x T6mm
    • Anzahl Seiten 84
    • GTIN 09786206753469

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470