Applications of Asymmetric GARCH Models with Conditional Distributions

CHF 61.25
Auf Lager
SKU
M5E0L9Q2SVL
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 29.10.2025 und Do., 30.10.2025

Details

The purpose of this honors thesis is to find an appropriate GARCH (Generalized Autoregressive Conditional Heteroskedasticity) Model for the daily closing returns of the NASDAQ Computer Index, given a ten-year time series of closing prices. On the one hand, Standard GARCH Models are not sufficient enough, if consider the leverage effects, that is, the volatility responds to good news and bad news differently. In this case, asymmetric GARCH Models are better, and, in particular, Exponential GARCH (EGARCH) Model is the best. On the other hand, EGARCH Models with alternative conditional distributions perform better than that with the default Normal Conditional Distribution. In particular, the Skew Generalized Error Distribution is found to be a good fit that generate large P-values against the null hypotheses in various tests. In conclusion, among all of the models investigated, the EGARCH Model with the Skew Generalized Error Distribution is the best.

Autorentext

I am a Statistics Master Candidate in Harvard University and I have Mathematics and Statistics Bachelor of Science Degrees from The Pennsylvania State University. In Penn State, I used to be a Statistical Analyst in the Department of Civil and Environmental Engineering, and a Undergraduate Research Assistant in the Department of Psychology.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Untertitel The Empirical Case of the NASDAQ Computer Index's Daily Closing Returns
    • Autor Emma Ran Li
    • Titel Applications of Asymmetric GARCH Models with Conditional Distributions
    • ISBN 978-3-659-26075-9
    • Format Kartonierter Einband (Kt)
    • EAN 9783659260759
    • Jahr 2012
    • Größe H220mm x B220mm x T150mm
    • Herausgeber LAP Lambert Academic Publishing
    • Anzahl Seiten 52
    • Genre Ratgeber & Freizeit
    • GTIN 09783659260759

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.