Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Applied Regularization Methods for the Social Sciences
Details
Researchers in the social sciences are faced with complex data sets in which they have relatively small samples and many variables (high dimensional data). Unlike the various technical guides currently on the market, this book **provides and overview of a variety of models alongside clear examples of hands-on application.
Autorentext
Holmes Finch is the George and Frances Ball Distinguished Professor of Educational Psychology at BSU, and a professor of statistics and psychometrics. His research interests include structural equation modeling, item response theory, educational and psychological measurement, multilevel modeling, machine learning, and robust multivariate inference. In addition to conducting research in the field of statistics, he also regularly collaborates with colleagues in fields such as educational psychology, neuropsychology, and exercise physiology.
Inhalt
- Introduction. 2. Theoretical underpinnings of regularization methods. 3. Regularization methods for linear models. 4. Regularization methods for generalized linear models. 5. Regularization methods for multivariate linear models. 6. Regularization methods for cluster analysis and principal components analysis. 7. Regularization methods for latent variable models. 8. Regularization methods for multilevel models. 9. Advanced topics in feature selection.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09780367408787
- Anzahl Seiten 297
- Herausgeber Chapman and Hall/CRC
- Größe H234mm x B156mm
- Jahr 2022
- EAN 9780367408787
- Format Fester Einband
- ISBN 978-0-367-40878-7
- Veröffentlichung 21.03.2022
- Titel Applied Regularization Methods for the Social Sciences
- Autor Finch Holmes
- Gewicht 625g
- Sprache Englisch