Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Applied Statistical Techniques for Data Mining
Details
Data cleansing is a critical step for data preparation. The values lost in the database are a common problem faced by data analysts. Missing values in data mining is continual troubles that can grounds errors in data analysis. Randomly missing elements in the attribute/dataset make data analysis complicated and also confused to consolidated result. It affects the accuracy of the result and intermediate queries. By using statistical / numerical methods, one can recover the missing data and decrease the suspiciousness in the database. The present research gives an applied approach of Newton Forward Interpolation (NFI) method to recover the missing values and other different methods also.Data in the dataset is always remaining as the basic building blocks for any query and further task and decisions. If basis data is incomplete or dataset have missing values the none cannot assume about well up to date final reports. In data mining missing values recognition and recovery is still major issue with irregular data. To overcome from such situation there is need of statistical or numerical techniques to recover the missing values in the dataset.
Autorentext
Dr. Darshanaben Dipakkumar Pandya is currently working as Assistant Professor Department of Computer Science , shri C.J Patel College of Computer Studies , Sakarchand Patel University , Visnagar, Dist:- Mahesana, State :-Gujarat. She did his Ph.D. in data mining and data analytics. She has Completed Ph.D. in Computer Science from Madhav University.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Herausgeber Scholars' Press
- Gewicht 364g
- Untertitel DE
- Autor Darshana Pandya , Abhijeetsinh Jadeja , Sheshang Degadwala
- Titel Applied Statistical Techniques for Data Mining
- Veröffentlichung 19.07.2022
- ISBN 6202319038
- Format Kartonierter Einband
- EAN 9786202319034
- Jahr 2022
- Größe H220mm x B150mm x T14mm
- Anzahl Seiten 232
- GTIN 09786202319034