Applied Statistical Techniques for Data Mining

CHF 113.95
Auf Lager
SKU
FPDUBSLS7IS
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Data cleansing is a critical step for data preparation. The values lost in the database are a common problem faced by data analysts. Missing values in data mining is continual troubles that can grounds errors in data analysis. Randomly missing elements in the attribute/dataset make data analysis complicated and also confused to consolidated result. It affects the accuracy of the result and intermediate queries. By using statistical / numerical methods, one can recover the missing data and decrease the suspiciousness in the database. The present research gives an applied approach of Newton Forward Interpolation (NFI) method to recover the missing values and other different methods also.Data in the dataset is always remaining as the basic building blocks for any query and further task and decisions. If basis data is incomplete or dataset have missing values the none cannot assume about well up to date final reports. In data mining missing values recognition and recovery is still major issue with irregular data. To overcome from such situation there is need of statistical or numerical techniques to recover the missing values in the dataset.

Autorentext

Dr. Darshanaben Dipakkumar Pandya is currently working as Assistant Professor Department of Computer Science , shri C.J Patel College of Computer Studies , Sakarchand Patel University , Visnagar, Dist:- Mahesana, State :-Gujarat. She did his Ph.D. in data mining and data analytics. She has Completed Ph.D. in Computer Science from Madhav University.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber Scholars' Press
    • Gewicht 364g
    • Untertitel DE
    • Autor Darshana Pandya , Abhijeetsinh Jadeja , Sheshang Degadwala
    • Titel Applied Statistical Techniques for Data Mining
    • Veröffentlichung 19.07.2022
    • ISBN 6202319038
    • Format Kartonierter Einband
    • EAN 9786202319034
    • Jahr 2022
    • Größe H220mm x B150mm x T14mm
    • Anzahl Seiten 232
    • GTIN 09786202319034

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470