Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings

CHF 143.95
Auf Lager
SKU
L29K9HHKNGP
Stock 1 Verfügbar
Geliefert zwischen Fr., 20.02.2026 und Mo., 23.02.2026

Details

This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.

Nominated as an outstanding PhD thesis by The University of Sydney, Australia Reports on an improved feature selection technique based on voting Offers a comprehensive review of machine learning methods for unsupervised classification and feature selection

Inhalt
Introduction .- Background .- Algorithms .- Point Anomaly Detection: Application to Freezing of Gait Monitoring .- Collective Anomaly Detection: Application to Respiratory Artefact Removals.- Spike Sorting: Application to Motor Unit Action Potential Discrimination .- Conclusion .

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030075187
    • Anzahl Seiten 107
    • Lesemotiv Verstehen
    • Genre Books on Technology
    • Auflage Softcover reprint of the original 1st edition 2019
    • Herausgeber Springer International Publishing
    • Gewicht 203g
    • Untertitel Springer Theses
    • Größe H7mm x B155mm x T235mm
    • Jahr 2019
    • EAN 9783030075187
    • Format Kartonierter Einband
    • ISBN 978-3-030-07518-7
    • Titel Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings
    • Autor Thuy T. Pham
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38