Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms

CHF 190.95
Auf Lager
SKU
L53QL6EGL7H
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

This book presents an overview of archiving strategies developed over the last years by the authors that deal with suitable approximations of the sets of optimal and nearly optimal solutions of multi-objective optimization problems by means of stochastic search algorithms. All presented archivers are analyzed with respect to the approximation qualities of the limit archives that they generate and the upper bounds of the archive sizes. The convergence analysis will be done using a very broad framework that involves all existing stochastic search algorithms and that will only use minimal assumptions on the process to generate new candidate solutions. All of the presented archivers can effortlessly be coupled with any set-based multi-objective search algorithm such as multi-objective evolutionary algorithms, and the resulting hybrid method takes over the convergence properties of the chosen archiver. This book hence targets at all algorithm designers and practitioners in the fieldof multi-objective optimization.



Highlights recent research on Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms Provides an overview of the different archiving methods which allow convergence of Multi-objective evolutionary algorithms in a stochastic sense Presents theory as well as applications

Inhalt
Introduction.- Multi-objective Optimization.- The Framework.- Computing the Entire Pareto Front.- Computing Gap Free Pareto Fronts.- Using Archivers within MOEAs.- Test Problems.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030637750
    • Genre Technology Encyclopedias
    • Auflage 1st edition 2021
    • Lesemotiv Verstehen
    • Anzahl Seiten 248
    • Herausgeber Springer International Publishing
    • Größe H235mm x B155mm x T14mm
    • Jahr 2022
    • EAN 9783030637750
    • Format Kartonierter Einband
    • ISBN 3030637751
    • Veröffentlichung 06.01.2022
    • Titel Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms
    • Autor Carlos Hernández , Oliver Schütze
    • Untertitel Studies in Computational Intelligence 938
    • Gewicht 382g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470