Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Arithmetic of Quadratic Forms
Details
This book is divided into two parts. The first part is preliminary and consists of algebraic number theory and the theory of semisimple algebras. There are two principal topics: classification of quadratic forms and quadratic Diophantine equations. The second topic is a new framework which contains the investigation of Gauss on the sums of three squares as a special case. To make the book concise, the author proves some basic theorems in number theory only in some special cases. However, the book is self-contained when the base field is the rational number field, and the main theorems are stated with an arbitrary number field as the base field. So the reader familiar with class field theory will be able to learn the arithmetic theory of quadratic forms with no further references.
Discusses algebraic number theory and the theory of semisimple algebras Discusses classification of quadratic forms over the ring of algebraic integers Discusses local class field theory Presents a new framework of quadratic Diophantine equations Includes supplementary material: sn.pub/extras
Inhalt
The Quadratic Reciprocity Law.- Arithmetic in an Algebraic Number Field.- Various Basic Theorems.- Algebras Over a Field.- Quadratic Forms.- Deeper Arithmetic of Quadratic Forms.- Quadratic Diophantine Equations.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781441917317
- Sprache Englisch
- Auflage 2010 edition
- Größe H241mm x B164mm x T27mm
- Jahr 2010
- EAN 9781441917317
- Format Fester Einband
- ISBN 978-1-4419-1731-7
- Veröffentlichung 30.06.2010
- Titel Arithmetic of Quadratic Forms
- Autor Goro Shimura
- Untertitel Springer Monographs in Mathematics
- Gewicht 517g
- Herausgeber SPRINGER NATURE
- Anzahl Seiten 238
- Lesemotiv Verstehen
- Genre Mathematik