Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Artificial Intelligence and Machine Learning
Details
This CCIS volume constitutes the refereed proceedings of Second International Artificial Intelligence Conference on Artificial Intelligence and Machine Learning, IAIC 2024, held in Jinyun, China, November 2024.
The 38 full papers presented were carefully reviewed and selected from 100 submissions.They were organized in following topical sections as follows:
Part I : Artificial Intelligence in Real-World Applications.
Part II : Artificial Intelligence in Network and Security systems.
Inhalt
.- Artificial Intelligence in Network and Security Systems.
.- Noise-Resilient Compressive Sensing via Orthogonality Constraints.
.- Joint Sensing of Computing Power and Network for Smart Grid: A Deep Matrix Completion Approach.
.- Rethinking RSSI-based Key Extraction for UAVs and Ground Stations.
.- Campus Card Security Depository System based on State Secret Algorithm.
.- Network Traffic Classification via Deep Hashing Network.
.- A Trust Management Integrated Bayesian Network Prediction in Vehicular Networks.
.- Research and Development of Distribution Line Defects and Violations Detection Method and Edge
Computing System Based on Improved PPYOLOe.
.- A Joint Optimization Algorithm for Computing Resource Allocation, UAV Trajectory, and Task
Offloading in Remote Regional VANETs.
.- LSTMR: Spatio-Temporal 3D Multiscale ResNet Model for Cellular Network Traffic Prediction.
.- An Efficient Name Lookup Approach Based on Character Indexing.
.- A Multi-Channel Target Direction Speech Separation Model Based on Efficient Convolutional Networks.
.- Secure Cloud-Edge Collaborative Task Scheduling Framework Across Data Centers.
.- Research on Security Sharing Mechanism of Cyber Threat Intelligence Based on Consortium Blockchain.
.- Towards Automated Decoding of Vehicle CAN Data using Deep Learning.
.- Transfer Learning-driven Surrogate-assisted Differential Evolution Algorithm with User Generated
Content.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789819671908
- Genre Information Technology
- Editor Hai Jin
- Lesemotiv Verstehen
- Anzahl Seiten 236
- Größe H235mm x B155mm x T13mm
- Jahr 2025
- EAN 9789819671908
- Format Kartonierter Einband
- ISBN 9819671906
- Veröffentlichung 17.07.2025
- Titel Artificial Intelligence and Machine Learning
- Untertitel Second International Artificial Intelligence Conference, IAIC 2024, Jinyun, China, November 8-10, 2024, Revised Selected Papers, Part II
- Gewicht 365g
- Herausgeber Springer
- Sprache Englisch