Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Artificial Intelligence for Materials Informatics
Details
This comprehensive book explores the transformative impact of AI on materials informatics, delving into machine learning/deep learning, and material knowledge representation. Embracing the transformative power of artificial intelligence (AI), the field of materials informatics has witnessed a remarkable revolution in its methodology and applications. AI has revolutionized the field of materials informatics, enabling researchers to discover, design, and optimize materials with enhanced properties at an accelerated pace. It showcases how AI is accelerating materials discovery, property prediction, providing case studies, and a comprehensive bibliography for further exploration. This essential resource equips researchers, scientists, and engineers with the knowledge and tools to harness the power of AI for groundbreaking advancements in materials science.
Explores the transformative impact of AI on materials informatics Delves into machine learning, deep learning, natural language processing, and material knowledge representation Showcases how AI is accelerating materials discovery, property prediction, and materials design
Inhalt
Topological indices-based vector representation of graphs.- Toxicity Prediction Using Convolutional Neural Networks: A Study of Deep Learning Approach.- AI and ML in Polymer Science: Enhancing Material Informatics through Predictive Modelling.- Transforming Carbon-Based Material: The Role of AI and ML Regression Techniques in Material Science.- Physics Informed Neural Networks: Fundamentals & Application to Phase Field Models.- Application of AI to help leverage Density Functional Theory computations in Materials Informatics.- XAI Approaches in Genetic Biomaterial Analysis.- AI-Driven Robotic Solutions in Material Engineering.- Implications of high-entropy energy materials in healthcare, environment and agriculture, along with the applications of artificial intelligence.- Advancements in Agricultural Materials: Machine Learning Models for Precision Fertilizer Prediction.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031899829
- Genre Technology Encyclopedias
- Editor S. Sachin Kumar, Neelesh Ashok, N. Sukumar, Neethu Mohan, K. P. Soman, Sabu Thomas
- Lesemotiv Verstehen
- Anzahl Seiten 260
- Herausgeber Springer
- Größe H241mm x B160mm x T20mm
- Jahr 2025
- EAN 9783031899829
- Format Fester Einband
- ISBN 3031899822
- Veröffentlichung 30.07.2025
- Titel Artificial Intelligence for Materials Informatics
- Untertitel Studies in Computational Intelligence 1213
- Gewicht 557g
- Sprache Englisch