Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems

CHF 76.30
Auf Lager
SKU
MEF3EFK0SHI
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Di., 07.10.2025 und Mi., 08.10.2025

Details

This book constitutes revised selected papers from the AIME 2019 workshops KR4HC/ProHealth 2019, the Workshop on Knowledge Representation for Health Care and Process-Oriented Information Systems in Health Care, and TEAAM 2019, the Workshop on Transparent, Explainable and Affective AI in Medical Systems.

The volume contains 5 full papers from KR4HC/ProHealth, which were selected out of 13 submissions. For TEAAM 8 papers out of 10 submissions were accepted for publication.


Inhalt

KR4HC/ProHealth - Joint Workshop on Knowledge Representation for Health Care and Process-Oriented Information Systems in Health Care.- A practical exercise on re-engineering clinical guideline models using different representation languages.- A method for goal-oriented guideline modeling in PROforma and ist preliminary evaluation.- Differential diagnosis of bacterial and viral meningitis using Dominance-Based Rough Set Approach.- Modelling ICU Patients to Improve Care Requirements and Outcome Prediction of Acute Respiratory Distress Syndrome: A Supervised Learning Approach.- Deep learning for haemodialysis time series classification.- TEAAM - Workshop on Transparent, Explainable and Affective AI in Medical Systems.- Towards Understanding ICU Treatments using Patient Health Trajectories.- An Explainable Approach of Inferring Potential Medication Effects from Social Media Data.- Exploring antimicrobial resistance prediction using post-hoc interpretable methods.- Local vs. Global Interpretability of Machine Learning Models in Type 2 Diabetes Mellitus Screening.- A Computational Framework towards Medical Image Explanation.- A Computational Framework for Interpretable Anomaly Detection and Classification of Multivariate Time Series with Application to Human Gait Data Analysis.- Self-organizing maps using acoustic features for prediction of state change in bipolar disorder.- Explainable machine learning for modeling of early postoperative mortality in lung cancer.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030374457
    • Auflage 1st edition 2019
    • Editor Mar Marcos, Jose M. Juarez, Richard Lenz, Gregor Stiglic, Slawomir Nowaczyk, Mor Peleg, Jerzy Stefanowski, Grzegorz J. Nalepa
    • Sprache Englisch
    • Größe H235mm x B155mm x T11mm
    • Jahr 2020
    • EAN 9783030374457
    • Format Kartonierter Einband
    • ISBN 3030374459
    • Veröffentlichung 04.01.2020
    • Titel Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems
    • Untertitel AIME 2019 International Workshops, KR4HC/ProHealth and TEAAM, Poznan, Poland, June 26-29, 2019, Revised Selected Papers
    • Gewicht 295g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 188
    • Lesemotiv Verstehen
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.