Artificial Intelligence in Medicine

CHF 86.75
Auf Lager
SKU
ORHJFI5J3CJ
Stock 1 Verfügbar
Geliefert zwischen Do., 29.01.2026 und Fr., 30.01.2026

Details

This two-volume set LNAI 14844-14845 constitutes the refereed proceedings of the 22nd International Conference on Artificial Intelligence in Medicine, AIME 2024, held in Salt Lake City, UT, USA, during July 9-12, 2024.

The 54 full papers and 22 short papers presented in the book were carefully reviewed and selected from 335 submissions.

The papers are grouped in the following topical sections:

Part I: Predictive modelling and disease risk prediction; natural language processing; bioinformatics and omics; and wearable devices, sensors, and robotics.

Part II: Medical imaging analysis; data integration and multimodal analysis; and explainable AI.


Inhalt

.- Medical imaging analysis.

.- 3T to 7T Whole Brain + Skull MRI Translation with Densely Engineered U-Net Network.

.- A Sparse Convolutional Autoencoder for Joint Feature Extraction and Clustering of Metastatic Prostate Cancer Images.

.- AI in Neuro-Oncology: Predicting EGFR Amplification in Glioblastoma from Whole Slide Images using Weakly Supervised Deep Learning.

.- An Exploration of Diabetic Foot Osteomyelitis X-ray Data for Deep Learning Applications.

.- Automated Detection and Characterization of Small Cell Lung Cancer Liver Metastases on CT.

.- Content-Based Medical Image Retrieval for Medical Radiology Images.

.- Cross-Modality Synthesis of T1c MRI from Non-Contrast Images Using GANs: Implications for Brain Tumor Research.

.- Harnessing the Power of Graph Propagation in Lung Nodule Detection.

.- Histology Image Artifact Restoration with Lightweight Transformer and Diffusion Model.

.- Improved Glioma Grade Prediction with Mean Image Transformation.

.- Learning to Predict the Optimal Template in Stain Normalization For Histology Image Analysis.

.- MRI Brain Cancer Image Detection Application of an Integrated U-Net and ResNet50 Architecture.

.- MRI Scan Synthesis Methods based on Clustering and Pix2Pix.

.- Supervised Pectoral Muscle Removal in Mammography Images.

.- TinySAM-Med3D: A Lightweight Segment Anything Model for Volumetric Medical Imaging with Mixture of Experts.

.- Towards a Formal Description of Artificial Intelligence Models and Datasets in Radiology.

.- Towards Aleatoric and Epistemic Uncertainty in Medical Image Classification.

.- Ultrasound Image Segmentation via a Multi-Scale Salient Network.

.- Data integration and multimodal analysis.

.- A 360-Degree View for Large Language Models: Early Detection of Amblyopia in Children using Multi-View Eye Movement Recordings.

.- Enhancing Anti-VEGF Response Prediction in Diabetic Macular Edema through OCT Features and Clinical Data Integration based on Deep Learning.

.- Expert Insight-Enhanced Follow-up Chest X-Ray Summary Generation.

.- Integrating multimodal patient data into attention-based graph networks for disease risk prediction.

.- Integrative analysis of amyloid imaging and genetics reveals subtypes of Alzheimer progression in early stage.

.- Modular Quantitative Temporal Transformer for Biobank-scale Unified Representations.

.- Multimodal Fusion of Echocardiography and Electronic Health Records for the Detection of Cardiac Amyloidosis.

.- Multi-View $k$-Nearest Neighbor Graph Contrastive Learning on Multi-Modal Biomedical Data.

.- Quasi-Orthogonal ECG-Frank XYZ Transformation with Energy-based models and clinical text.

.- Explainable AI.

.- Do you trust your model explanations? An analysis of XAI performance under dataset shift.

.- Explainable AI for Fair Sepsis Mortality Predictive Model.

.- Explanations of Augmentation Methods For Deep Learning ECG Classification.

.- Exploring the possibility of arrhythmia interpretation of time domain ECG using XAI: a preliminary study.

.- Improving XAI Explanations for Clinical Decision-Making Physicians' Perspective on Local Explanations in Healthcare.

.- Manually-Curated Versus LLM-Generated Explanations for Complex Patient Cases: An Exploratory Study with Physicians.

.- On Identifying Effective Investigations with Feature Finding using Explainable AI: an Ophthalmology Case Study.

.- Towards Interactive and Interpretable Image Retrieval-Based Diagnosis: Enhancing Brain Tumor Classification with LLM Explanations and Latent Structure Preservation.

.- Towards Trustworthy AI in Cardiology: A Comparative Analysis of Explainable AI Methods for Electrocardiogram Interpretation.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031665349
    • Genre Information Technology
    • Auflage 2024
    • Editor Joseph Finkelstein, Enea Parimbelli, Robert Moskovitch
    • Lesemotiv Verstehen
    • Anzahl Seiten 396
    • Größe H235mm x B155mm x T22mm
    • Jahr 2024
    • EAN 9783031665349
    • Format Kartonierter Einband
    • ISBN 3031665341
    • Veröffentlichung 27.07.2024
    • Titel Artificial Intelligence in Medicine
    • Untertitel 22nd International Conference, AIME 2024, Salt Lake City, UT, USA, July 9-12, 2024, Proceedings, Part II
    • Gewicht 598g
    • Herausgeber Springer Nature Switzerland
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38