Artificial Intelligence in Radiation Therapy

CHF 76.35
Auf Lager
SKU
I3JNV448SSE
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025

Details

This book constitutes the refereed proceedings of the First International Workshop on Connectomics in Artificial Intelligence in Radiation Therapy, AIRT 2019, held in conjunction with MICCAI 2019 in Shenzhen, China, in October 2019.

The 20 full papers presented were carefully reviewed and selected from 24 submissions. The papers discuss the state of radiation therapy, the state of AI and related technologies, and hope to find a pathway to revolutionizing the field to ultimately improve cancer patient outcome and quality of life.


Inhalt

Using Supervised Learning and Guided Monte Carlo Tree Search for Beam Orientation Optimization in Radiation Therapy.- Feasibility of CT-only 3D dose prediction for VMAT prostate plans using deep learning.- Automatically Tracking and Detecting Signicant Nodal Mass Shrinkage During Head-and-Neck Radiation Treatment Using Image Saliency.- 4D-CT Deformable Image Registration Using an Unsupervised Deep Convolutional Neural Network.- Toward markerless image-guided radiotherapy using deep learning for prostate cancer.- A Two-Stage Approach for Automated Prostate Lesion Detection and Classification with Mask R-CNN and Weakly Supervised Deep Neural Network.- A Novel Deep Learning Framework for Standardizing the Label of OARs in CT.- Multimodal Volume-Aware Detection and Segmentation for Brain Metastases Radiosurgery.- Voxel-level Radiotherapy Dose Prediction Using Densely Connected Network with Dilated Convolutions.- Online Target Volume Estimation and Prediction From an Interlaced Slice Acquisition - A Manifold Embedding and Learning Approach.- One-dimensional convolutional network for Dosimetry Evaluation at Organs-at-Risk in Esophageal Radiation Treatment Planning.- Unpaired Synthetic Image Generation in Radiology Using GANs.- Deriving lung perfusion directly from CT image using deep convolutional neural network: A preliminary study.- Individualized 3D Dose Distribution Prediction Using Deep Learning.- Deep Generative Model-Driven Multimodal Prostate Segmentation in Radiotherapy.- Dose Distribution Prediction for Optimal Treatment of Modern External Beam Radiation Therapy for Nasopharyngeal Carcinoma.- DeepMCDose: A Deep Learning Method for Efficient Monte Carlo Beamlet Dose Calculation by Predictive Denoising in MR-Guided Radiotherapy.- UC-GAN for MR to CT Image Synthesis.- CBCT-based Synthetic MRI Generation for CBCT-guided Adaptive Radiotherapy.- Cardio-pulmonary Substructure Segmentation of CT images using Convolutional Neural Networks.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030324858
    • Editor Dan Nguyen, Lei Xing, Steve Jiang
    • Sprache Englisch
    • Genre Anwendungs-Software
    • Größe H235mm x B155mm x T11mm
    • Jahr 2019
    • EAN 9783030324858
    • Format Kartonierter Einband
    • ISBN 3030324850
    • Veröffentlichung 18.10.2019
    • Titel Artificial Intelligence in Radiation Therapy
    • Untertitel First International Workshop, AIRT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings
    • Gewicht 289g
    • Herausgeber Springer
    • Anzahl Seiten 184
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.