Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Artificial neural networks in underground infrastructure management
Details
Due to the decrease in rainfall and drought in the last decade and as a result of the lack of water in a wide area of the country, groundwater management is very important and sensitive. In order to apply a correct management, the need to identify and model and predict the fluctuations of the water table in the plains for long-term planning and more and better use of the water potentials of the plains is deeply felt. Various factors and factors affect the level of underground water, among them are weather factors (temperature, rainfall, evaporation), the amount of discharge and feeding from the table, etc., which make the analysis of this phenomenon difficult. formation Physical-conceptual models, regression and time series are the most common methods of analyzing the fluctuations of the underground water level (hydrograph).
Autorentext
Dr. Shahide Dehghan, Ph.D., Department of Geography, Najafabad Branch, Islamic Azad University, Najafabad, Iran. Technical Skills are Climatology, Statistical Analysis, Geography, Geo-Natural Hazards, Geomorphology, Factor Analysis, Data Analysis, Climate Change, Atmosphere, Global Warming, Climate Sciences, Insurance Investment, Water Resources.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786207650804
- Anzahl Seiten 64
- Genre Technology
- Sprache Englisch
- Herausgeber LAP LAMBERT Academic Publishing
- Untertitel DE
- Größe H220mm x B150mm
- Jahr 2024
- EAN 9786207650804
- Format Kartonierter Einband
- ISBN 978-620-7-65080-4
- Titel Artificial neural networks in underground infrastructure management
- Autor Shahide Dehghan , Hoosein Norouzi , Hossein Gholami