Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Assessing Learning Paradigms in Text Classification Using ML
Details
Text categorization has become the core research area in text mining domain. Semi-supervised learning paradigm is relatively new learning paradigm compared to supervised and unsupervised learning, semi-supervised learning paradigm is introduced. The topics in the book are introduced such that a novice reader can grasp them easily. The simple to implement, traditional K-Nearest Neighbour learning algorithm is employed in the process of categorization. Terms importance with respect to each class label are identified and are used to improve the performance of the traditional KNN algorithm.
Autorentext
Dr. Mohammed Abdul Wajeed currently works for Keshav Memorial Institute of Technology, Hyderabad in Computer Science & Engineering Department. He completed M.Tech Computer Science & Engineering from Osmania University in 2007, and PHD in Computer Science & Engineering from Jawahar Lal Nehru Technological University in 2015.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786202197922
- Genre Information Technology
- Anzahl Seiten 104
- Größe H220mm x B150mm
- Jahr 2018
- EAN 9786202197922
- Format Kartonierter Einband
- ISBN 978-620-2-19792-2
- Veröffentlichung 29.01.2018
- Titel Assessing Learning Paradigms in Text Classification Using ML
- Autor Mohammed Abdul Wajeed
- Herausgeber LAP LAMBERT Academic Publishing
- Sprache Englisch