Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Asymptotic Analysis
CHF 98.35
Auf Lager
SKU
T1TCE2I022F
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
Fedoryuk's book is a unique reference for the asymptotic theory of ordinary differential equations given all the important formulae of this field. It is also an indispensable guide to the literature up to the most recent research.
Inhalt
- The Analytic Theory of Differential Equations.- §1. Analyticity of the Solutions of a System of Ordinary Differential Equations.- § 2. Regular Singular Points.- § 3. Irregular Singular Points.- 2. Second-Order Equations on the Real Line.- § 1. Transformations of Second-Order Equations.- § 2. WKB-Bounds.- § 3. Asymptotic Behaviour of Solutions of a Second-Order Equation for Large Values of the Parameter.- § 4. Systems of Two Equations Containing a Large Parameter.- § 5. Systems of Equations Close to Diagonal Form.- § 6. Asymptotic Behaviour of the Solutions for Large Values of the Argument.- § 7. Dual Asymptotic Behaviour.- § 8. Counterexamples.- § 9. Roots of Constant Multiplicity.- § 10. Problems on Eigenvalues.- § 11. A Problem on Scattering.- 3. Second-Order Equations in the Complex Plane.- § 1. Stokes Lines and the Domains Bounded by them.- § 2. WKB-Bounds in the Complex Plane.- § 3. Equations with Polynomial Coefficients. Asymptotic Behaviour of a Solution in the Large.- § 4. Equations with Entire or Meromorphic Coefficients.- § 5. Asymptotic Behaviour of the Eigenvalues of the Operator -d2 / dx2 + ?2q(x). Self-Adjoint Problems.- § 6. Asymptotic Behaviour of the Discrete Spectrum of the Operator -y? + ?2q(x)y. Non-Self-Adjoint Problems.- § 7. The Eigenvalue Problem with Regular Singular Points.- § 8. Quasiclassical Approximation in Scattering Problems.- § 9. Sturm-Liouville Equations with Periodic Potential.- 4. Second-Order Equations with Turning Points.- § 1. Simple Turning Points. The Real Case.- § 2. A Simple Turning Point. The Complex Case.- § 3. Some Standard Equations.- §4. Multiple and Fractional Turning Points.- § 5. The Fusion of a Turning Point and Regular Singular Point.- § 6. Multiple Turning Points. The ComplexCase.- § 7. Two Close Turning Points.- § 8. Fusion of Several Turning Points.- 5. nth-Order Equations and Systems.- § 1. Equations and Systems on a Finite Interval.- § 2. Systems of Equations on a Finite Interval.- § 3. Equations on an Infinite Interval.- § 4. Systems of Equations on an Infinite Interval.- § 5. Equations and Systems in the Complex Plane.- § 6. Turning Points.- § 7. A Problem on Scattering, Adiabatic Invariants and a Problem on Eigenvalues.- § 8. Examples.- References.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642634352
- Übersetzer A. Rodick
- Sprache Englisch
- Größe H235mm x B155mm x T21mm
- Jahr 2012
- EAN 9783642634352
- Format Kartonierter Einband
- ISBN 3642634354
- Veröffentlichung 13.10.2012
- Titel Asymptotic Analysis
- Autor Mikhail V. Fedoryuk
- Untertitel Linear Ordinary Differential Equations
- Gewicht 569g
- Herausgeber Springer
- Anzahl Seiten 376
- Lesemotiv Verstehen
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung