Asymptotic Methods for Ordinary Differential Equations

CHF 165.55
Auf Lager
SKU
M56I6BCAIE7
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

In this book we consider a Cauchy problem for a system of ordinary differential equations with a small parameter. The book is divided into th ree parts according to three ways of involving the small parameter in the system. In Part 1 we study the quasiregular Cauchy problem. Th at is, a problem with the singularity included in a bounded function j , which depends on time and a small parameter. This problem is a generalization of the regu larly perturbed Cauchy problem studied by Poincare [35]. Some differential equations which are solved by the averaging method can be reduced to a quasiregular Cauchy problem. As an example, in Chapter 2 we consider the van der Pol problem. In Part 2 we study the Tikhonov problem. This is, a Cauchy problem for a system of ordinary differential equations where the coefficients by the derivatives are integer degrees of a small parameter.

Zusammenfassung

From the reviews:

"The book is devoted to the study of the Cauchy problem for the systems of ordinary differential equations ... . We emphasize, finally, that the book contains many explicitly or analytically or numerically solved examples. Summarizing it is an interesting and well-written book that provides good estimates to the solution of the Cauchy problem posed for the systems of very general nonlinear ODE-s. It will be useful for anyone interested in analysis, especially to specialists in ODE-s, physicists, engineers and students ... ." (Jeno Hegedus, Acta Scientiarum Mathematicarum, Vol. 74, 2008)


Inhalt

  1. Solution Expansions of the Quasiregular Cauchy Problem.- 2. The van der Pol Problem.- 3. The Boundary Functions Method.- 4. Proof of Theorems 28.128.4.- 5. The Method of Two Parameters.- 6. The Motion of a Gyroscope Mounted in Gimbals.- 7. Supplement.- 8. The Boundary Functions Method.- 9. The Method of Two Parameters.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789048155002
    • Sprache Englisch
    • Größe H235mm x B155mm x T21mm
    • Jahr 2010
    • EAN 9789048155002
    • Format Kartonierter Einband
    • ISBN 9048155002
    • Veröffentlichung 15.12.2010
    • Titel Asymptotic Methods for Ordinary Differential Equations
    • Autor R. P. Kuzmina
    • Untertitel Mathematics and Its Applications 512
    • Gewicht 569g
    • Herausgeber Springer
    • Anzahl Seiten 376
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38