Attractivity and Bifurcation for Nonautonomous Dynamical Systems

CHF 74.75
Auf Lager
SKU
6IEE9L4ABN9
Stock 1 Verfügbar
Geliefert zwischen Do., 20.11.2025 und Fr., 21.11.2025

Details

Although, bifurcation theory of equations with autonomous and periodic time dependence is a major object of research in the study of dynamical systems since decades, the notion of a nonautonomous bifurcation is not yet established. In this book, two different approaches are developed which are based on special definitions of local attractivity and repulsivity. It is shown that these notions lead to nonautonomous Morse decompositions, which are useful to describe the global asymptotic behavior of systems on compact phase spaces. Furthermore, methods from the qualitative theory for linear and nonlinear systems are derived, and nonautonomous counterparts of the classical one-dimensional autonomous bifurcation patterns are developed.


From the reviews:

"In this volume the reader will find a theory of breakdown of stability and a theory of transition for a one-parameter family of nonautonomous dynamical systems. This book presents a wealth of interesting theoretical concepts, which will certainly be important in the further development of the theory of breakdown of stability and of transition for nonautonomous dynamical systems." (Russell A. Johnson, Mathematical Reviews, Issue 2008 k)


Inhalt
Notions of Attractivity and Bifurcation.- Nonautonomous Morse Decompositions.- LinearSystems.- Nonlinear Systems.- Bifurcations in Dimension One.- Bifurcations of Asymptotically Autonomous Systems.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783540712244
    • Sprache Englisch
    • Auflage 2007
    • Größe H235mm x B155mm x T13mm
    • Jahr 2007
    • EAN 9783540712244
    • Format Kartonierter Einband
    • ISBN 3540712240
    • Veröffentlichung 08.06.2007
    • Titel Attractivity and Bifurcation for Nonautonomous Dynamical Systems
    • Autor Martin Rasmussen
    • Untertitel Lecture Notes in Mathematics 1907
    • Gewicht 359g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 232
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470