Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Automated Taxonomy Discovery and Exploration
Details
This book provides a principled data-driven framework that progressively constructs, enriches, and applies taxonomies without leveraging massive human annotated data. Traditionally, people construct domain-specific taxonomies by extensive manual curations, which is time-consuming and costly. In today's information era, people are inundated with the vast amounts of text data. Despite their usefulness, people haven't yet exploited the full power of taxonomies due to the heavy curation needed for creating and maintaining them. To bridge this gap, the authors discuss automated taxonomy discovery and exploration, with an emphasis on label-efficient machine learning methods and their real-world usages. Taxonomy organizes entities and concepts in a hierarchy way. It is ubiquitous in our daily life, ranging from product taxonomies used by online retailers, topic taxonomies deployed by news outlets and social media, as well as scientific taxonomies deployed by digital libraries across various domains. When properly analyzed, these taxonomies can play a vital role for science, engineering, business intelligence, policy design, e-commerce, and more. Intuitive examples are used throughout enabling readers to grasp concepts more easily.
Discusses the process of creating, maintaining, and applying taxonomies via simple, easy-to-understand examples Provides a systematic review of the current research frontier of each task and discusses their real-world applications Includes supporting materials containing links to commonly used evaluation datasets and a code repository of representative algorithms
Autorentext
Jiaming Shen, Ph.D., is a Research Scientist at Google Research working on data mining and natural language processing. His research aims to develop automated methods for mining knowledge from text data without excessive human annotations. He completed his Ph.D. from the University of Illinois at Urbana-Champaign and a B.S. degree from Shanghai Jiao Tong University. His research has been awarded several fellowships and scholarships, including a Brian Totty Graduate Fellowship and a Yunni & Maxine Pao Memorial Fellowship.
Jiawei Han, Ph.D. is a Michael Aiken Chair Professor at the University of Illinois at Urbana-Champaign. His research areas encompass data mining, text mining, data warehousing, and information network analysis, with over 800 research publications. He is a Fellow of both ACM and the IEEE and has received numerous prominent awards, including the ACM SIGKDD Innovation Award (2004) and the IEEE Computer Society W. Wallace McDowell Award (2009).
Inhalt
Introduction.- Concept Set Expansion.- Taxonomy Construction.- Taxonomy Enrichment.- Taxonomy-Guided Classification.- Conclusions.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031114045
- Genre Information Technology
- Auflage 1st edition 2022
- Lesemotiv Verstehen
- Anzahl Seiten 116
- Größe H246mm x B173mm x T13mm
- Jahr 2022
- EAN 9783031114045
- Format Fester Einband
- ISBN 3031114043
- Veröffentlichung 29.09.2022
- Titel Automated Taxonomy Discovery and Exploration
- Autor Jiawei Han , Jiaming Shen
- Untertitel Synthesis Lectures on Data Mining and Knowledge Discovery
- Gewicht 385g
- Herausgeber Springer International Publishing
- Sprache Englisch