Automatic Speech Recognition

CHF 165.15
Auf Lager
SKU
K6NFQH2G8HC
Stock 1 Verfügbar
Geliefert zwischen Di., 24.02.2026 und Mi., 25.02.2026

Details

This book reviews past and present work on discriminative and hierarchical models for both acoustic and language modeling. It also analyzes the research direction and trends towards establishing future-generation speech recognition.

This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.


Presents important theoretical foundation and practical considerations of using a wide range of deep learning models and methods for automatic speech recognition Reviews past and present work (up to the fall of year 2014) on most impactful work based on deep learning for acoustic modeling in speech recognition Goes deeply into rigorous mathematical and technical descriptions of deep learning methods successful for speech recognition and related areas of applications Analyzes research directions and trends towards establishing future-generation speech recognition based on extending the current deep learning models Includes supplementary material: sn.pub/extras

Inhalt
Section 1: Automatic speech recognition: Background.- Feature extraction: basic frontend.- Acoustic model: Gaussian mixture hidden Markov model.- Language model: stochastic N-gram.- Historical reviews of speech recognition research: 1st, 2nd, 3rd, 3.5th, and 4th generations.- Section 2: Advanced feature extraction and transformation.- Unsupervised feature extraction.- Discriminative feature transformation.- Section 3: Advanced acoustic modeling.- Conditional random field (CRF) and hidden conditional random field (HCRF).- Deep-Structured CRF.- Semi-Markov conditional random field.- Deep stacking models.- Deep neural network hidden Markov hybrid model.- Section 4: Advanced language modeling.- Discriminative Language model.- Log-linear language model.- Neural network language model.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781447157786
    • Genre Elektrotechnik
    • Auflage 2015
    • Sprache Englisch
    • Lesemotiv Verstehen
    • Anzahl Seiten 348
    • Größe H241mm x B160mm x T25mm
    • Jahr 2014
    • EAN 9781447157786
    • Format Fester Einband
    • ISBN 1447157788
    • Veröffentlichung 28.11.2014
    • Titel Automatic Speech Recognition
    • Autor Li Deng , Dong Yu
    • Untertitel A Deep Learning Approach
    • Gewicht 688g
    • Herausgeber Springer London

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38