Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Automating Data-Driven Modelling of Dynamical Systems
Details
This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user's perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification.
Presents a novel approach for automating system identification Offers novel solutions to multi-criteria system identification problems Reviews fundamental concepts of system identification
Inhalt
Introduction.- The State-of-the-art.- Preliminaries - Evolutionary Algorithms.- Tree Adjoining Grammar.- Performance measures.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030903459
- Lesemotiv Verstehen
- Genre Electrical Engineering
- Auflage 1st edition 2022
- Sprache Englisch
- Anzahl Seiten 256
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T15mm
- Jahr 2023
- EAN 9783030903459
- Format Kartonierter Einband
- ISBN 3030903451
- Veröffentlichung 04.02.2023
- Titel Automating Data-Driven Modelling of Dynamical Systems
- Autor Dhruv Khandelwal
- Untertitel An Evolutionary Computation Approach
- Gewicht 394g