Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Automation 2024: Advances in Automation, Robotics and Measurement Techniques
Details
This book presents the result of the most recent discussion among interdisciplinary specialists facing scientific and industrial challenges. The papers presented during the Automation 2024 Conference deal with applying artificial neural networks and other machine learning methods in perception, modelling, and control, utilization of fractional order systems, and novel sensors and measurement techniques. Recent developments in robotics and the quality of exerted control and optimization are also prominent in this volume. Specific aspects of the design of diverse robots and their modelling and control are described in depth. We strongly believe that the solutions and guidelines presented in this book will be useful to both researchers and engineers during the development of automation, robotics, and measurement systems in a rapidly changing global industry.
Includes recent research on automation, robotics, and measuring techniques Presents the scientific outcomes of the 28th International Conference Automation 2024 Focuses on industrial applications of automation, robotics, and monitoring
Inhalt
Research towards an optimal method of modeling and regulating a cement mill using AI algorithms.- New sliding hyperplane for achieving bounded output performance in DSMC.- Applicability of Fractional-Order PID Controllers for Twin Rotor Aerodynamic System Objects.- Employing Generative Artificial Intelligence in Replacement of Traditional Backend Systems.- Failure Modeling of Industrial Electric Motors using Unsupervised Learning Methods.- Automatic functional tests of cash registers.- Hyperspectral lighting design for industrial applications.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031782657
- Lesemotiv Verstehen
- Genre Electrical Engineering
- Editor Roman Szewczyk, Cezary Zieliski, Magorzata Kaliczyska, Vytautas Buinskas
- Sprache Englisch
- Anzahl Seiten 368
- Herausgeber Springer Nature Switzerland
- Größe H235mm x B155mm
- Jahr 2025
- EAN 9783031782657
- Format Kartonierter Einband
- ISBN 978-3-031-78265-7
- Veröffentlichung 01.01.2025
- Titel Automation 2024: Advances in Automation, Robotics and Measurement Techniques
- Untertitel Lecture Notes in Networks and Systems 1219