Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Automotive Security Analyzer for Exploitability Risks
Details
Our lives depend on automotive cybersecurity, protecting us inside and near vehicles. If vehicles go rogue, they can operate against the driver's will and potentially drive off a cliff or into a crowd. The Automotive Security Analyzer for Exploitability Risks (AutoSAlfER) evaluates the exploitability risks of automotive on-board networks by attack graphs. AutoSAlfER's Multi-Path Attack Graph algorithm is 40 to 200 times smaller in RAM and 200 to 5 000 times faster than a comparable implementation using Bayesian networks, and the Single-Path Attack Graph algorithm constructs the most reasonable attack path per asset with a computational, asymptotic complexity of only O(n * log(n)), instead of O(n²). AutoSAlfER runs on a self-written graph database, heuristics, pruning, and homogenized Gaussian distributions and boosts people's productivity for a more sustainable and secure automotive on-board network. Ultimately, we enjoy more safety and security in and around autonomous, connected, electrified, and shared vehicles.
Autorentext
Dr. Martin Salfer is an IT security researcher at TUM and a tech lead at an automaker. He earned his Ph.D. in IT Security from TUM, completed his M.Sc. with honours in Software Engineering at UniA/LMU/TUM, and obtained his B.Sc. in Computer Science from HM, with a study abroad at KPU in Vancouver, Canada, and ESIEA in Paris, France, and a research visit at NII in Tokyo, Japan. He is the lead author of 28 publications, including five IT security patents.
Inhalt
Introduction.- Basics and Related Work.- Models.- Single-Path Attack Graph Algorithm.- Multi-Path Attack Graph Algorithm.- Conclusion.- References
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783658435059
- Lesemotiv Verstehen
- Genre Electrical Engineering
- Auflage 2024
- Sprache Englisch
- Anzahl Seiten 272
- Herausgeber Springer Fachmedien Wiesbaden
- Größe H210mm x B148mm x T15mm
- Jahr 2024
- EAN 9783658435059
- Format Kartonierter Einband
- ISBN 3658435054
- Veröffentlichung 16.03.2024
- Titel Automotive Security Analyzer for Exploitability Risks
- Autor Martin Salfer
- Untertitel An Automated and Attack Graph-Based Evaluation of On-Board Networks
- Gewicht 356g