Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Axes and Planes of Symmetry of an An-isotropic Elastic Material
Details
This book deals with necessary and sufficient conditions for the existence of axes and planes of symmetry. We discuss matrix representation of an elasticity tensor belonging to a trigonal, a tetragonal or a hexagonal material. The planes of symmetry of an anisotropic elastic material (if they exist) can be found by the Cowin-Mehrabadi theorem (1987) and the modified Cowin-Mehrabadi theorem proved by Ting (1996). Using the Cowin-Mehrabadi formalism Ahmad (2010) proved the result that an anisotropic material possesses a plane of symmetry if and only if the matrix associated with the material commutes with the matrix representing the elasticity tensor. A necessary and sufficient condition to determine an axis of symmetry of an anisotropic elastic material is given by Ahmad (2010). We review the Cowin-Mehrabadi theorem for an axis of symmetry and develop a straightforward way to find the matrix representation for a trigonal, a tetragonal or a hexagonal material.
Autorentext
Siddra Rana obtained the degree of MPhil in Applied mathematics in 2010 from NUST Pakistan. Presently, she is working as a Lecturer in the Department of Mathematics, University of Wah, Wah cantt. She has taught various courses of Applied Mathematics at the undergraduate and Postgraduate level. Her research interests are in the field of elasticity.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Gewicht 167g
- Untertitel Numerical examples for identi cation of planes of symmetry and their matrix representation of the elastic material
- Autor Siddra Rana
- Titel Axes and Planes of Symmetry of an An-isotropic Elastic Material
- ISBN 978-3-8473-2677-9
- Format Kartonierter Einband (Kt)
- EAN 9783847326779
- Jahr 2011
- Größe H229mm x B151mm x T10mm
- Herausgeber LAP Lambert Academic Publishing
- Anzahl Seiten 100
- Auflage Aufl.
- Genre Ratgeber & Freizeit
- GTIN 09783847326779