Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Banach Space Valued Neural Network
Details
This book is about the generalization and modernization of approximation by neural network operators. Functions under approximation and the neural networks are Banach space valued. These are induced by a great variety of activation functions deriving from the arctangent, algebraic, Gudermannian, and generalized symmetric sigmoid functions. Ordinary, fractional, fuzzy, and stochastic approximations are exhibited at the univariate, fractional, and multivariate levels. Iterated-sequential approximations are also covered. The book's results are expected to find applications in the many areas of applied mathematics, computer science and engineering, especially in artificial intelligence and machine learning. Other possible applications can be in applied sciences like statistics, economics, etc. Therefore, this book is suitable for researchers, graduate students, practitioners, and seminars of the above disciplines, also to be in all science and engineering libraries.
Inhalt
Algebraic function induced Banach space valued ordinary and fractional neural network approximations.- Gudermannian function induced Banach space valued ordinary and fractional neural network approximations.- Generalized symmetrical sigmoid function induced Banach space valued ordinary and fractional neural network approximations.- Abstract multivariate algebraic function induced neural network approximations.- General multivariate arctangent function induced neural network approximations.- Abstract multivariate Gudermannian function induced neural network approximations.- Generalized symmetrical sigmoid function induced neural network multivariate approximation.- Quantitative Approximation by Kantorovich-Choquet quasi-interpolation neural network operators revisited.- Quantitative Approximation by Kantorovich-Shilkret quasi-interpolation neural network operators revisited.- Voronsovkaya Univariate and Multivariate asymptotic expansions for sigmoid functions induced quasi-interpolationneural network operators revisited.- Univariate Fuzzy Fractional various sigmoid function activated neural network approximations revisited.- Multivariate Fuzzy Approximation by Neural Network Operators induced by several sigmoid functions revisited.- Multivariate Fuzzy-Random and stochastic various activation functions activated Neural Network Approximations.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031164026
- Genre Technology Encyclopedias
- Auflage 1st edition 2023
- Lesemotiv Verstehen
- Anzahl Seiten 440
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T24mm
- Jahr 2023
- EAN 9783031164026
- Format Kartonierter Einband
- ISBN 3031164024
- Veröffentlichung 03.10.2023
- Titel Banach Space Valued Neural Network
- Autor George A. Anastassiou
- Untertitel Ordinary and Fractional Approximation and Interpolation
- Gewicht 663g
- Sprache Englisch