Basic Topological Structures of Ordinary Differential Equations

CHF 169.55
Auf Lager
SKU
7TD4EQOG2SD
Stock 1 Verfügbar
Geliefert zwischen Di., 03.02.2026 und Mi., 04.02.2026

Details

The aim of this book is a detailed study of topological effects related to continuity of the dependence of solutions on initial values and parameters. This allows us to develop cheaply a theory which deals easily with equations having singularities and with equations with multivalued right hand sides (differential inclusions). An explicit description of corresponding topological structures expands the theory in the case of equations with continuous right hand sides also. In reality, this is a new science where Ordinary Differential Equations, General Topology, Integration theory and Functional Analysis meet. In what concerns equations with discontinuities and differential inclu sions, we do not restrict the consideration to the Cauchy problem, but we show how to develop an advanced theory whose volume is commensurable with the volume of the existing theory of Ordinary Differential Equations. The level of the account rises in the book step by step from second year student to working scientist.

Klappentext

Traditionally, equations with discontinuities in space variables follow the ideology of the `sliding mode'. This book contains the first account of the theory which allows the consideration of exact solutions for such equations. The difference between the two approaches is illustrated by scalar equations of the type y =f(y) and by equations arising under the synthesis of optimal control. A detailed study of topological effects related to limit passages in ordinary differential equations widens the theory for the case of equations with continuous right-hand sides, and makes it possible to work easily with equations with complicated discontinuities in their right-hand sides and with differential inclusions. Audience: This volume will be of interest to graduate students and researchers whose work involves ordinary differential equations, functional analysis and general topology.


Inhalt
1 Topological and Metric Spaces.- 2 Some Properties of Topological, Metric and Euclidean Spaces.- 3 Spaces of Mappings and Spaces of Compact Subsets.- 4 Derivation and Integration.- 5 Weak Topology on the Space L1 and Derivation of Convergent Sequences.- 6 Basic Properties of Solution Spaces.- 7 Convergent Sequences of Solution Spaces.- 8 Peano, Caratheodory and Davy Conditions.- 9 Comparison Theorem.- 10 Changes of Variables, Morphisms and Maximal Extensions.- 11 Some Methods of Investigation of Equations.- 12 Equations and Inclusions with Complicated Discontinuities in the Space Variables.- 13 Equations and Inclusions of Second Order. Cauchy Problem Theory.- 14 Equations and Inclusions of Second Order. Periodic Solutions, Dirichlet Problem.- 15 Behavior of Solutions.- 16 Two-Dimensional Systems.- References.- Notation.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789048149957
    • Sprache Englisch
    • Auflage Softcover reprint of the original 1st edition 1998
    • Größe H235mm x B155mm x T29mm
    • Jahr 2010
    • EAN 9789048149957
    • Format Kartonierter Einband
    • ISBN 9048149959
    • Veröffentlichung 08.12.2010
    • Titel Basic Topological Structures of Ordinary Differential Equations
    • Autor V. V. Filippov
    • Untertitel Mathematics and Its Applications 432
    • Gewicht 809g
    • Herausgeber Springer Netherlands
    • Anzahl Seiten 540
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38