Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Bayesian and grAphical Models for Biomedical Imaging
Details
This book constitutes the refereed proceedings of the First International Workshop on Bayesian and grAphical Models for Biomedical Imaging, BAMBI 2014, held in Cambridge, MA, USA, in September 2014 as a satellite event of the 17th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2014.
The 11 revised full papers presented were carefully reviewed and selected from numerous submissions with a key aspect on probabilistic modeling applied to medical image analysis. The objectives of this workshop compared to other workshops, e.g. machine learning in medical imaging, have a stronger mathematical focus on the foundations of probabilistic modeling and inference. The papers highlight the potential of using Bayesian or random field graphical models for advancing scientific research in biomedical image analysis or for the advancement of modeling and analysis of medical imaging data.
Inhalt
N3 Bias Field Correction Explained as a Bayesian Modeling Method.- A Bayesian Approach to Distinguishing Interdigitated Muscles in the Tongue from Limited Diffusion Weighted Imaging.- Optimal Joint Segmentation and Tracking of Escherichia Coli in the Mother Machine.- Physiologically Informed Bayesian Analysis of ASL fMRI Data.- Bone Reposition Planning for Corrective Surgery Using Statistical Shape Model: Assessment of Differential Geometrical Features.- An Inference Language for Imaging.- An MRF-Based Discrete Optimization Framework for Combined DCE-MRI Motion Correction and Pharmacokinetic Parameter Estimation.- Learning Imaging Biomarker Trajectories from Noisy Alzheimer's Disease Data Using a Bayesian Multilevel Model.- Four Neuroimaging Questions that P-Values Cannot Answer (and Bayesian Analysis Can).- Spherical Topic Models for Imaging Phenotype Discovery in Genetic Studies.- A Generative Model for Automatic Detection of Resolving Multiple Sclerosis Lesions.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319122885
- Editor M. Jorge Cardoso, Ivor Simpson, Annemie Ribbens, Doina Precup, Tal Arbel
- Sprache Englisch
- Auflage 2014
- Größe H235mm x B155mm x T9mm
- Jahr 2014
- EAN 9783319122885
- Format Kartonierter Einband
- ISBN 3319122886
- Veröffentlichung 02.10.2014
- Titel Bayesian and grAphical Models for Biomedical Imaging
- Untertitel First International Workshop, BAMBI 2014, Cambridge, MA, USA, September 18, 2014, Revised Selected Papers
- Gewicht 230g
- Herausgeber Springer International Publishing
- Anzahl Seiten 144
- Lesemotiv Verstehen
- Genre Mathematik