Bayesian Inference for Probabilistic Risk Assessment

CHF 306.15
Auf Lager
SKU
VDI4FRSSN6P
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book synthesizes significant recent advances in the use of risk analysis in many government agencies and private corporations, providing a Bayesian foundation for framing probabilistic problems and performing inference on these problems.

Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis building blocks that can be modified, combined, or used as-is to solve a variety of challenging problems.

The MCMC approach used is implemented via textual scripts similar to a macro-type programming language. Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved. Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking.

Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models.


Formulates complex problems without becoming weighed down by mathematical detail Presents a modern perspective of Bayesian networks and Markov chain Monte Carlo (MCMC) sampling Written by experts

Inhalt

  1. Introduction and Motivation.- 2. Introduction to Bayesian Inference.- 3. Bayesian Inference for Common Aleatory Models.- 4. Bayesian Model Checking.- 5. Time Trends for Binomial and Poisson Data.- 6. Checking Convergence to Posterior Distribution.- 7. Hierarchical Bayes Models for Variability.- 8. More Complex Models for Random Durations.- 9. Modeling Failure with Repair.- 10. Bayesian Treatment of Uncertain Data.- 11. Bayesian Regression Models.- 12. Bayesian Inference for Multilevel Fault Tree Models.- 13. Additional Topics.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781447127086
    • Auflage 2011
    • Sprache Englisch
    • Genre Physik & Astronomie
    • Größe H235mm x B155mm
    • Jahr 2013
    • EAN 9781447127086
    • Format Kartonierter Einband
    • ISBN 978-1-4471-2708-6
    • Veröffentlichung 27.11.2013
    • Titel Bayesian Inference for Probabilistic Risk Assessment
    • Autor Dana Kelly , Curtis Smith
    • Untertitel A Practitioner's Guidebook
    • Gewicht 373g
    • Herausgeber Springer London
    • Anzahl Seiten 228
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470