Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Bayesian Network Modeling of Corrosion
Details
This book represents a compilation of experience from a slate of experts involved in developing and deploying Bayesian Networks (BN) for corrosion management. The contributors describe how probability distributions can be developed for corroding systems and BN can be applied as an ideal framework to deal with corrosion risk. Corrosion can develop suddenly and grow rapidly after a long incubation period and take many non-uniform aspects, including pitting and stress corrosion cracking, that cannot be mitigated by simply bulking up the system. They also describe how complex engineering structures and systems are influenced by many natural and engineering factors that come together in myriad ways. It provides a broad perspective to the reader on the potential of BN as an artificial intelligence tool for corrosion risk management and the challenges for implementing it.
Illustrates BN tools for corrosion risk management Facilitates interdisciplinary collaboration and communication Is the only book focusing on BN applied to corrosion
Autorentext
Dr. Narasi Sridhar is CEO of MC Consult LLC, in Temecula, CA and an Adjunct Professor in the Department of Materials Science & Engineering, The Ohio State University. He has over 45 years of experience in corrosion science and engineering.
Inhalt
Chapter1. Introduction: Risk Assessment.- Chapter.2. Bayesian Network Basics.- Chaoter.3. Corrosion Models.- Chapter.4. Statistical Models: Propagation of Uncertainty and Monte Carlo modeling.- Chapter.5. Corrosion Risk Assessment in Pipelines.- Chapter.6. Oil and Gas Production Systems.- Chapter.7.Nuclear Energy.- Chapter.8. Localized Corrosion in Saline Environments.- Chapter.9. BN for reinforced concrete structures.- Chapter.10.Coatings.- Chapter.11.Summary and Future.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031561276
- Lesemotiv Verstehen
- Genre Mechanical Engineering
- Auflage 2024
- Editor Narasi Sridhar
- Sprache Englisch
- Anzahl Seiten 352
- Herausgeber Springer International Publishing
- Größe H241mm x B160mm x T24mm
- Jahr 2024
- EAN 9783031561276
- Format Fester Einband
- ISBN 3031561279
- Veröffentlichung 30.06.2024
- Titel Bayesian Network Modeling of Corrosion
- Gewicht 757g