Belief Functions: Theory and Applications

CHF 259.20
Auf Lager
SKU
KHTUDRVILE5
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Do., 30.10.2025 und Fr., 31.10.2025

Details

The theory of belief functions, also known as evidence theory or Dempster-Shafer theory, was first introduced by Arthur P. Dempster in the context of statistical inference, and was later developed by Glenn Shafer as a general framework for modeling epistemic uncertainty. These early contributions have been the starting points of many important developments, including the Transferable Belief Model and the Theory of Hints. The theory of belief functions is now well established as a general framework for reasoning with uncertainty, and has well understood connections to other frameworks such as probability, possibility and imprecise probability theories.

This volume contains the proceedings of the 2nd International Conference on Belief Functions that was held in Compiègne, France on 9-11 May 2012. It gathers 51 contributions describing recent developments both on theoretical issues (including approximation methods, combination rules, continuous belief functions, graphical models and independence concepts) and applications in various areas including classification, image processing, statistics and intelligent vehicles.

Latest research on theory and applications Belief functions Results of the 2nd International Conference on Belief Functions, Compiègne, France 9-11 May 2012 Written by leading experts in the field

Inhalt
From the content: On belief functions and random sets.- Evidential Multi-label classification method using the Random k-Label sets approach.- An Evidential Improvement for Gender Profiling.- An Interval-Valued Dissimilarity Measure for Belief Functions Based on Credal Semantics.- An evidential pattern matching approach for vehicle identification.- Comparison between a Bayesian approach and a method based on continuous belief functions for pattern recognition.- Prognostic by classification of predictions combining similarity-based estimation and belief functions.- Adaptative initialisation of a EvKNN classification algorithm.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642294600
    • Auflage 2012
    • Editor Marie-Hélène Masson, Thierry Denoeux
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T25mm
    • Jahr 2012
    • EAN 9783642294600
    • Format Kartonierter Einband
    • ISBN 364229460X
    • Veröffentlichung 27.04.2012
    • Titel Belief Functions: Theory and Applications
    • Untertitel Proceedings of the 2nd International Conference on Belief Functions, Compigne, France 9-11 May 2012
    • Gewicht 686g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 456

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.