Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Biclustering of Microarray Gene Expression Data :
Details
Extracting meaningful information from gene expression data poses a great challenge to the community of researchers in the field of computation as well as to biologists. It is possible to determine the behavioral patterns of genes such as nature of their interaction, similarity of their behavior and so on, through the analysis of gene expression data.In order to identify various patterns from gene expression data, data mining techniques are essential. Major data mining techniques which can be applied for the analysis of gene expression data include clustering, classification, association rule mining etc. Clustering is an important data mining technique for the analysis of gene expression data. However clustering has some disadvantages. To overcome the problems associated with clustering, biclustering is introduced.
Autorentext
Balamurugan R received the B.E. and M.E. degree in Computer Science and Engineering in 2010 and 2012 from Anna University. He has completed his Ph.D in Information and Communication Engineering in JAN-2016 from Anna University. His areas of interest include data mining and meta-heuristic optimization techniques.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659746390
- Genre Information Technology
- Anzahl Seiten 56
- Größe H220mm x B150mm x T4mm
- Jahr 2015
- EAN 9783659746390
- Format Kartonierter Einband
- ISBN 3659746398
- Veröffentlichung 17.07.2015
- Titel Biclustering of Microarray Gene Expression Data :
- Autor Balamurugan Rengeswaran , Natarajan Annadasampalayam Mathaiyan , Premalatha Kandasamy
- Untertitel With Heuristic Approach
- Gewicht 102g
- Herausgeber LAP Lambert Academic Publishing
- Sprache Englisch