Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Big Data
Details
This book constitutes the refereed proceedings of the 11th CCF Conference on BigData 2023, which took place in Nanjing, China, in September 2023.
The 14 full papers presented in this volume were carefully reviewed and selected from 69 submissions. The topics of accepted papers include theories and methods of data science, algorithms and applications of big data.
Inhalt
Long-term and Short-term Perception in Knowledge Tracing.- A Transfer Learning Enhanced Decomposition-Based Hybrid Framework for Forecasting Multiple Time-Series.- Dataset Search over Integrated Metadata from China's Public Data Open Platforms.- Integrating DCNNs with Genetic Algorithm for Diabetic Retinopathy Classification.- The Convolutional Neural Network Combing Feature-aligned and Attention Pyramid for Fine-Grained Visual Classification.- OCWYOLO:A Road Depression Detection Method.- Explicit Exploring Geometric Modality for Shape-enhanced Single-view 3D Face Reconstruction.- Fine edge and texture prior guided super resolution reconstruction network.- UD-GCN: Uncertainty-Based Semi-Supervised Deep GCN for Imbalanced Node Classification.- Twin Support Vector Regression with Privileged Information.- Detecting Social Robots Based on Multi-View Graph Transformer.- Scheduling Containerized Workflow in Multi-Cluster Kubernetes.- A Study of Electricity Theft Detection Method Based on Anomaly Transformer.- Application and Research on a Large Model Training Method Based on Instruction Fine-Tuning in Domain-Specific Tasks.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789819989782
- Genre Information Technology
- Auflage 1st edition 2023
- Editor Enhong Chen, Yang Gao, Longbing Cao, Fu Xiao, Wanqi Yang, Rong Gu, Li Wang, Laizhong Cui, Yiping Cui
- Lesemotiv Verstehen
- Anzahl Seiten 212
- Größe H235mm x B155mm x T12mm
- Jahr 2023
- EAN 9789819989782
- Format Kartonierter Einband
- ISBN 9819989787
- Veröffentlichung 15.12.2023
- Titel Big Data
- Untertitel 11th CCF Conference, BigData 2023, Nanjing, China, September 8-10, 2023, Proceedings
- Gewicht 330g
- Herausgeber Springer Nature Singapore
- Sprache Englisch