Binomial Theorem

CHF 56.30
Auf Lager
SKU
NKJCAH2DMOG
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

In elementary algebra, the binomial theorem describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the power (x + y)n into a sum involving terms of the form axbyc, where the coefficient of each term is a positive integer, and the sum of the exponents of x and y in each term is n. For example, (x+y)^4 ;=; x^4 ,+, 4 x^3y ,+, 6 x^2 y^2 ,+, 4 x y^3 ,+, y^4. The coefficients appearing in the binomial expansion are known as binomial coefficients. They are the same as the entries of Pascal's triangle, and can be determined by a simple formula involving factorials. These numbers also arise in combinatorics, where the coefficient of xn kyk is equal to the number of different combinations of k elements that can be chosen from an n-element set.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130281717
    • Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
    • Sprache Englisch
    • Größe H220mm x B150mm x T9mm
    • Jahr 2010
    • EAN 9786130281717
    • Format Fachbuch
    • ISBN 978-613-0-28171-7
    • Titel Binomial Theorem
    • Untertitel Exponentiation, Summation, Natural Number, Pascal's Triangle, Formula, Combinatorics, Element (mathematics), Set (mathematics), Binomial Coefficient, Binomial Distribution
    • Gewicht 237g
    • Herausgeber Alphascript Publishing
    • Anzahl Seiten 148
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38