Boundedly Generated Group

CHF 42.60
Auf Lager
SKU
UADLLMTEKSR
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, a group is called boundedly generated if it can be expressed as a finite product of cyclic subgroups. The property of bounded generation is also closely related with the congruence subgroup problem (see Lubotzky & Segal 2003). Several authors have stated in the mathematical literature that it is obvious that finitely generated free groups are not boundedly generated. This section contains various obvious and less obvious ways of proving this. Some of the methods, which touch on bounded cohomology, are important because they are geometric rather than algebraic, so can be applied to a wider class of groups, for example Gromov-hyperbolic groups. Since for any n 2, the free group on 2 generators F2 contains the free group on n generators Fn as a subgroup of finite index (in fact n 1), once one non-cyclic free group on finitely many generators is known to be not boundedly generated, this will be true for all of them.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131125508
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131125508
    • Format Fachbuch
    • Titel Boundedly Generated Group
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 80
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38