Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Branching Process Models of Cancer
Details
This volume develops results on continuous time branching processes and applies them to study rate of tumor growth, extending classic work on the Luria-Delbruck distribution. As a consequence, the author calculate the probability that mutations that confer resistance to treatment are present at detection and quantify the extent of tumor heterogeneity. As applications, the author evaluate ovarian cancer screening strategies and give rigorous proofs for results of Heano and Michor concerning tumor metastasis. These notes should be accessible to students who are familiar with Poisson processes and continuous time Markov chains.
Richard Durrett is a mathematics professor at Duke University, USA. He is the author of 8 books, over 200 journal articles, and has supervised more than 40 Ph.D students. Most of his current research concerns the applications of probability to biology: ecology, genetics and most recently cancer.
The first volume published in the new series Mathematical Biosciences Institute Concise and easy to understand for graduate students familiar with Poisson processes and continuous time Markov chains Includes examples and theorems throughout
Autorentext
Richard Durrett is mathematics professor at Duke University, USA. He is the author of 8 books, over 200 journal articles and has supervised more than 40 Ph.D. students. Most of his current research concerns the applications of probability to biology: ecology, genetics, and most recently cancer.
Inhalt
Multistage Theory of Cancer.- Mathematical Overview.- Branching Process Results.- Time for Z0 to Reach Size M.- Time Until the First Type 1.- Mutation Before Detection?.- Accumulation of Neutral Mutations.- Properties of the Gamma Function.- Growth of Z1(t).- Movements of Z1(t).- Luria-Delbruck Distributions.- Number of Type 1's at Time TM.- Gwoth of Zk(t).- Transitions Between Waves.- Time to the First Type \tauk, k \ge 2.- Application: Metastasis.- Application: Ovarian Cancer.- Application: Intratumor Heterogeneity.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319160641
- Sprache Englisch
- Auflage 2015
- Größe H235mm x B155mm x T5mm
- Jahr 2015
- EAN 9783319160641
- Format Kartonierter Einband
- ISBN 3319160648
- Veröffentlichung 06.07.2015
- Titel Branching Process Models of Cancer
- Autor Richard Durrett
- Untertitel Mathematical Biosciences Institute Lecture Series 1.1 - Stochastics in Biologica
- Gewicht 138g
- Herausgeber Springer International Publishing
- Anzahl Seiten 72
- Lesemotiv Verstehen
- Genre Mathematik