Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Branching Random Walks
Details
Providing an elementary introduction to branching random walks, the main focus of these lecture notes is on the asymptotic properties of one-dimensional discrete-time supercritical branching random walks, and in particular, on extreme positions in each generation, as well as the evolution of these positions over time.
Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on trees.
Includes supplementary material: sn.pub/extras
Inhalt
I Introduction.- II GaltonWatson trees.- III Branching random walks and martingales.- IV The spinal decomposition theorem.- V Applications of the spinal decomposition theorem.- VI Branching random walks with selection.- VII Biased random walks on GaltonWatson trees.- A Sums of i.i.d. random variables.- References.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319253718
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st edition 2015
- Anzahl Seiten 148
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T9mm
- Jahr 2016
- EAN 9783319253718
- Format Kartonierter Einband
- ISBN 3319253719
- Veröffentlichung 05.02.2016
- Titel Branching Random Walks
- Autor Zhan Shi
- Untertitel cole d't de Probabilits de Saint-Flour XLII - 2012
- Gewicht 236g
- Sprache Englisch