Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Brownian Motion and its Applications to Mathematical Analysis
Details
These lecture notes provide an introduction to the applications of Brownian motion to analysis and more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in "deterministic" fields of mathematics.
The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains.
Contains interesting examples of couplings Gentle introduction to Brownian motion and analysis Heuristic explanations of the main results
Inhalt
- Brownian motion.- 2. Probabilistic proofs of classical theorems.- 3. Overview of the "hot spots" problem.- 4. Neumann eigenfunctions and eigenvalues.- 5. Synchronous and mirror couplings.- 6. Parabolic boundary Harnack principle.- 7. Scaling coupling.- 8. Nodal lines.- 9. Neumann heat kernel monotonicity.- 10. Reflected Brownian motion in time dependent domains.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319043937
- Sprache Englisch
- Auflage 2014
- Größe H235mm x B155mm x T9mm
- Jahr 2014
- EAN 9783319043937
- Format Kartonierter Einband
- ISBN 3319043935
- Veröffentlichung 20.02.2014
- Titel Brownian Motion and its Applications to Mathematical Analysis
- Autor Krzysztof Burdzy
- Untertitel cole d't de Probabilits de Saint-Flour XLIII - 2013
- Gewicht 242g
- Herausgeber Springer International Publishing
- Anzahl Seiten 152
- Lesemotiv Verstehen
- Genre Mathematik