Building models for Auction systems

CHF 51.55
Auf Lager
SKU
BD18GGRA0JH
Stock 1 Verfügbar
Geliefert zwischen Mi., 24.12.2025 und Do., 25.12.2025

Details

we build online models for the auction fraud moderation and detection system designed for a major Asian online auction website. By empirical experiments on a realword online auction fraud detection data, we show that our proposed online probit model framework, which combines online feature selection, bounding coefficients from expert knowledge and multiple instance learning, can significantlyimprove over baselines and the human-tuned model. Note that this online modeling framework can be easily extended to many other applications, such as web spam detection, content optimization and so forth. Regarding to future work, one direction is to include the adjustment of the selection bias in the online model training process. It has been proven to be very effective for offline models .

Autorentext

Dr.U.Sivaji is currently an Associate Professor with the Department of Information Technology, Institute of Aeronautical Engineering, Dundigal, Engineering, Dundigal, Hyderabad, Telangana. His current research interests include software engineering, machine learning, networks, cyber security, software automation, and cloud computing.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786206158608
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 60
    • Genre Software
    • Sprache Englisch
    • Gewicht 107g
    • Untertitel fraud detection system
    • Autor Sivaji U
    • Größe H220mm x B150mm x T4mm
    • Jahr 2023
    • EAN 9786206158608
    • Format Kartonierter Einband
    • ISBN 6206158608
    • Veröffentlichung 19.04.2023
    • Titel Building models for Auction systems

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470