Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Business Analytics
Details
This book focuses on three core knowledge requirements for effective and thorough data analysis for solving business problems. These are a foundational understanding of:
statistical, econometric, and machine learning techniques;
data handling capabilities;
at least one programming language.
Practical in orientation, the volume offers illustrative case studies throughout and examples using Python in the context of Jupyter notebooks. Covered topics include demand measurement and forecasting, predictive modeling, pricing analytics, customer satisfaction assessment, market and advertising research, and new product development and research. This volume will be useful to business data analysts, data scientists, and market research professionals, as well as aspiring practitioners in business data analytics. It can also be used in colleges and universities offering courses and certifications in business data analytics, data science, and market research.
Uses case studies to illustrate concepts Presents examples using Python in the context of Jupyter notebooks with Programming Literacy examples Features appendices with technical details
Autorentext
Walter R. Paczkowski, PhD, has worked at AT&T, AT&T Bell Labs, and AT&T Labs. He founded Data Analytics Corp., a statistical consulting company, in 2001. Dr. Paczkowski is also a part-time lecturer of economics at Rutgers University. He is the author of Deep Data Analytics for New Product Development (2020), Pricing Analytics: Models and Advanced Quantitative Techniques for Product Pricing (2018), and Market Data Analysis Using JMP (2016).
Inhalt
Types of Business Problems.- 2. Data for Business Problems.- 3. Beginning Data Handling.- 4. Data Preprocessing.- 5. Data Visualization: The Basics.- 6. OLS Regression Basics.- 7. Time Series Basics.- 8. Statistical Tables.- 9. Advanced Data Handling.- 10. Advanced OLS.- 11. Logistic Regression.- 12. Classification.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030870256
- Lesemotiv Verstehen
- Genre Maths
- Anzahl Seiten 428
- Herausgeber Springer
- Größe H235mm x B155mm x T24mm
- Jahr 2023
- EAN 9783030870256
- Format Kartonierter Einband
- ISBN 3030870251
- Veröffentlichung 05.01.2023
- Titel Business Analytics
- Autor Walter R. Paczkowski
- Untertitel Data Science for Business Problems
- Gewicht 645g
- Sprache Englisch