CARDIOVASCULAR DISEASE DETECTION USING OPTIMAL FEATURE SELECTION

CHF 40.20
Auf Lager
SKU
4EN6P8O5AT7
Stock 1 Verfügbar
Geliefert zwischen Di., 24.02.2026 und Mi., 25.02.2026

Details

Cardiovascular disease (CVD) remains a leading cause of death globally, emphasizing the need for accurate early detection. This study presents a machine learning-based framework for CVD detection using ECG signals, focusing on enhanced feature selection. The system integrates Fast Correlation-Based Filter (FCBF), Minimum Redundancy Maximum Relevance (mRMR), Relief, and Particle Swarm Optimization (PSO) to identify the most relevant and non-redundant features. FCBF removes redundant data, mRMR selects key relevant features, Relief ranks features based on their class-distinguishing power, and PSO optimizes the final feature set. Classification is performed using Extra Trees and Random Forest classifiers, known for high accuracy and resistance to overfitting. The combined model achieved a 100% accuracy rate across diverse datasets, outperforming existing methods and demonstrating superior performance in feature selection and classification. This framework holds strong potential to improve early CVD diagnosis and enhance clinical decision-making.

Autorentext
Dr. Mary Swarna Latha Gade received PhD from Koneru Lakshmaiah Education Foundation, Vijayawada in the year 2023. She obtained MTech from JNTU Hyderabad and B. Tech from JNTU Kakinada. She has 15 years of experience in teaching and research. Her areas of interest are fault tolerance, image processing, machine learning, quantum computing.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786208225797
    • Anzahl Seiten 56
    • Genre Self Help & Development
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm
    • Jahr 2025
    • EAN 9786208225797
    • Format Kartonierter Einband
    • ISBN 978-620-8-22579-7
    • Titel CARDIOVASCULAR DISEASE DETECTION USING OPTIMAL FEATURE SELECTION
    • Autor Mary Swarna Latha Gade , Laxmi Narayanamma K
    • Untertitel DE
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38