Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Carpenter's Rule Problem
CHF 36.75
Auf Lager
SKU
P0NVK8IBD29
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. The carpenter''s rule problem is a discrete geometry problem, which can be stated in the following manner: Can a simple planar polygon be moved continuously to a position where all its vertices are in convex position, so that the edge lengths and simplicity are preserved along the way? A closely related problem is to show that any polygon can be convexified, that is, continuously transformed, preserving edge distances and avoiding crossings, into a convex polygon. Both problems were successfully solved by Robert Connelly, Erik Demaine and Günter Rote in 2000. Subsequently to their work, Ileana Streinu provided a simplified combinatorial proof. Both the original proof and Streinu''s proof work by finding non-expansive motions of the input, continuous transformations such that no two points ever move towards each other.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131255151
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Größe H220mm x B220mm
- EAN 9786131255151
- Format Fachbuch
- Titel Carpenter's Rule Problem
- Herausgeber Betascript Publishing
- Anzahl Seiten 68
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung