Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Choosing Neural Equalizers Using Genetic Algorithm
Details
Genetic Algorithm and Artificial Neural Networks have been combined to solve several problems in last two decades. The first one have been used to help find parameters and topology decision of the second one, or to cope with learning algorithm limitations. Some problems demand the application of neural networks as alternative solution to solve them, but studies that develop a methodology to indicate the best neural architecture suitable for a specific application is rare to be found in the literature. In this work we apply genetic algorithm to search for neural weights and use this information to indicate the best structure and measure the efficiency of the learning algorithm. We used a channel equalization problem as an example to test the proposed methodology. The results obtained from this application are very promising.
Autorentext
Tiago Mota received the B.Sc. degree in electrical engineering from the Federal University of Bahia, Brazil, in 2003, the M.Sc. degree from the Federal University of Bahia in 2014. From 2003 to 2008, he was a Mobile Telecommunications Engineer with the Telecom Italia Mobile and joined the National Telecommunications Agency of Brazil in 2009.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659673535
- Anzahl Seiten 56
- Genre Allgemein & Lexika
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 102g
- Untertitel An approach to search for the neural network structure
- Größe H220mm x B150mm x T4mm
- Jahr 2015
- EAN 9783659673535
- Format Kartonierter Einband
- ISBN 3659673536
- Veröffentlichung 08.01.2015
- Titel Choosing Neural Equalizers Using Genetic Algorithm
- Autor Tiago Mota , Jorgean Leal , Antônio Cezar Lima
- Sprache Englisch